
Collaborative Geodesign for Multifunctional Landscapes

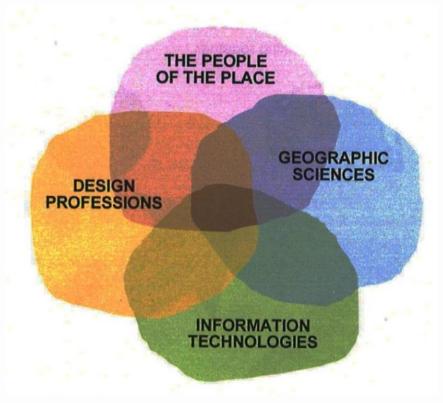
Innovations in Collaborative Modeling

Michigan State University, June 4-5, 2015

Carissa Slotterback, PhD, AICP Director of Research Engagement, Office of the Vice President for Research Associate Professor, Urban & Regional Planning University of Minnesota

Geodesign

technology, analysis+ decision support


Integrates technology + decision making processes integrate geographic, environmental & social data + rapid iterative modeling + engaged planning & design

Collaborative Geodesign

Allows for active, realtime engagement with information, place + people

Beyond just making GIS available to public – supporting collaborative decision making

Beyond expert systems, allows public to be the experts

Steinitz 2012

Collaborative Geodesign

Capabilities:

Integrates multiple data sources

Simulates impacts - visualization

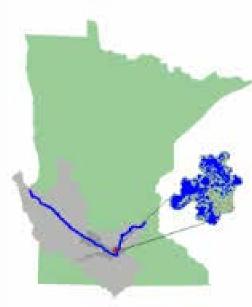
Decreases cycle time of participatory design processes <u>Outcomes:</u>

Participants **discuss** data sources (including own perceptions)

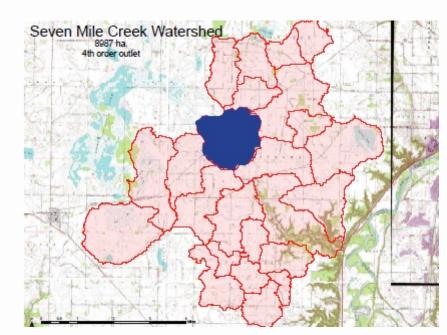
Interactive technology supports **social learning**

Consensus emerges through group-based exploration of alternatives

Application Seven Mile Creek Watershed


Goal: Sustainable Intensification –

more commodities + more conservation from working agricultural landscapes


Building a Communitybased Bioeconomy

- Engage diverse stakeholders Examine information – food, biomass, water quality, habitat Identify values
- Design for biomass production **Explore tradeoffs, prospects**

for win-win

24,000 acres

Realizing the Bioeconomy In real places, with real people

Hope and skepticism: Farmer and local community views on the socio-economic benefits of agricultural bioenergy

Alissa M. Rossi¹, C. Clare Hinrichs*

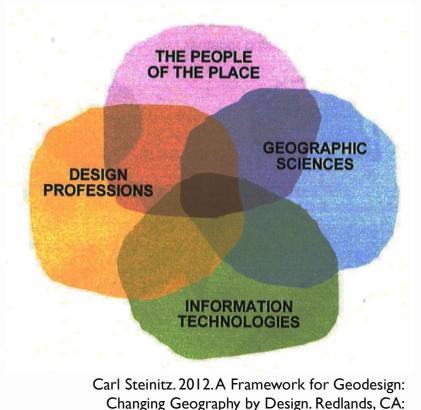
Department of Agricultural Economics and Rural Sociology, The Pennsylvania State University, Armsby Bldg, University Park, PA 16802-5600, USA

Application Workshop series with stakeholders

Agriculture, conservation, & governance **stakeholders**

Initial workshops – framing/data on production, dialogue on issues and values

Latter workshops – active geodesign with visualization, landscape design, evaluation



Application Designing for biomass with Geodesign

Goal: More commodities and more conservation from working agricultural landscapes

Collaborative Geodesign allows for active, real-time engagement with information, place, + people

ESRI

Application Designing for biomass with Geodesign

Geodesign system

55" touchscreens

Multiple orientation + data layers

Users control presence + transparency of layers

Users design with multiple practices

Conservation tillage Low phosphorus Stover harvest Native prairie Switchgrass

Images of visual appearance of practices

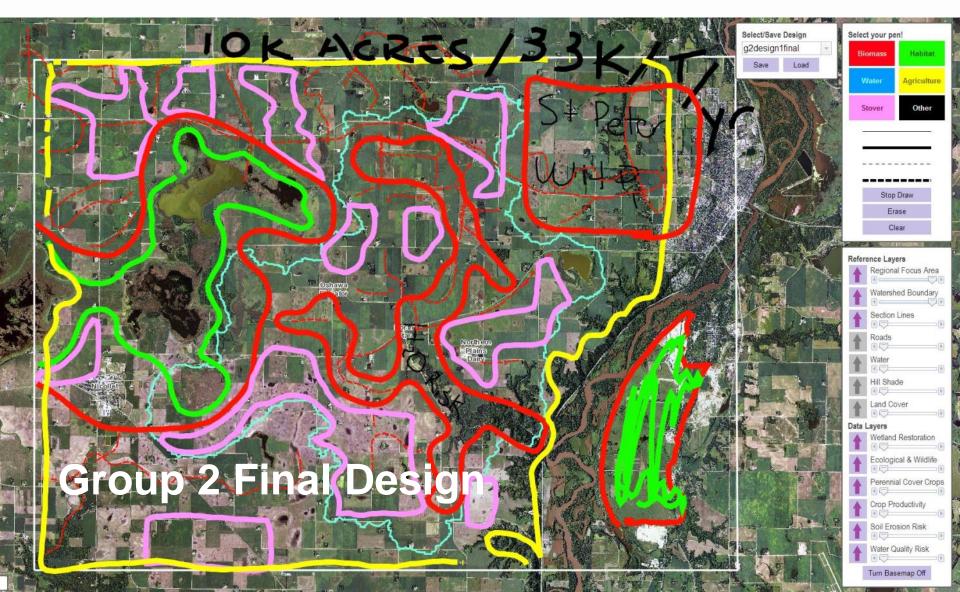
Instantaneous performance_ feedback via models

Allows multiple iterations

Roads + water features Section boundaries Land cover + topography Watershed boundaries Restorable wetlands Habitat quality Soil erosion + water quality contamination susceptibility Crop productivity

Total suspended solids Phosphorus Total runoff Habitat quality Carbon sequestration Financial profitability

GeoDesign System Components


Designing for biomass with Collaborative Geodesign

Collaborative Geodesign task: 10,000 acres of biomass in 75,000 acre region

Design performance

Water Yield (ft/yr)

Before

	Carbon Sequestration (t/yr)	Market Return (\$/yr)	Sediment (t/yr)	Phosphorus (Ib/yr)	Water Yield (ft/yr)	Habitat
Central	80	\$53,934	-0.42%	0.34%	-10.27%	2.39%
East	285	(\$25,428)	-14.70%	-16.78%	-23.19%	7.08%
North	113	\$6,483	-5.35%	-4.12%	-11.18%	3.70%
South	264	\$91,321	-18.11%	-17.30%	-19.38%	5.97%
West	179	\$15,050	-1.85%	2.90%	-10.63%	3.40%
Overall	1386	\$130,983	-8.53%	-7.11%	-15.13%	4.76%

Habitat

After

Outcomes Application + Research

Deliberation + design activities increased participants' belief in the potential value of working agricultural landscapes for sustainable intensification

Increased perceptions of **trust + shared understanding** with other stakeholders

Workshops viewed as **legitimate, credible forum** for exploring prospect of sustainable bioeconomy

Outcomes Application

Participant feedback:

Process facilitated thinking about all systems and how integrated they are

"These workshops were like a fast-forward for the evolution of a conversation – from the very simplistic agriculture-vs.-environment conflict to a much more nuanced, complicated and respectful understanding of costs, benefits, tradeoffs and perspectives surrounding the potential of biomass production to be a driving force of positive outcomes for multiple interests" Process resulted in thinking deeper about equilibrium between environment/ economy

Helped see prospect of multiple benefits from one practice

Next Steps Seven Mile Creek Watershed

Building a Communitybased Bioeconomy

- Build on stakeholder engagement + design for biomass
- Design supply chain
- Address sustainable stover harvest
- Advance cover crop technology
- Assess policy impacts
- Pursue community economic development benefits
- Exploring tradeoffs, prospects for win-win

Thank you!

Additional project team members:

Dr. Nick Jordan, Department of Agronomy and Plant Genetics Dr. David Mulla, Department of Soil, Water and Climate Dr. David Pitt, Department of Landscape Architecture Len Kne, U-Spatial Mike Reichenbach, Extension Bryan Runck, Department of Geography Amanda Sames, Conservation Biology Program Cindy Zerger, Toole Design Group

Funding provided by:

USDA-NRCS Conservation Innovation Grant Program U of M Office of the Vice President for Research U of M Initiative for Renewable Energy and the Environment U of M Institute on the Environment