Collaborative Geodesign in Practice

Len Kne

University of Minnesota lenkne@umn.edu

Transdisciplinary Team

- David Pitt
- Bryan Runck
- Carissa Slotterback
- Nick Jordan
- David Mulla
- Mike Reichenbach
- Len Kne
- Many more...

Landscape Architecture

Geography

Policy

Agro Ecology

Soil Science

Adult Education

GISci and Technology

I'm the geek

points lines polygons

bits and bytes

What is GIS?

A geographic information system (GIS) integrates hardware, software, and data for capturing, managing, analyzing, and displaying all forms of geographically referenced information.

A GIS helps you answer questions and solve problems by looking at your data in a way that is quickly understood and easily shared.

Layers

Main concept of GIS and representing reality

Pull apart themes

Each layer sits on top of another and has a unique relationship

Types of Spatial Data

Vector Data

Raster Data

Spatial Relationships

Spatial relationships define how these layers interact with one another "The Power of GIS"

Scale

Real world to map representation

Spatial relationships are NOT affected by scale

Details are affected by scale and how entities are represented

Definition of Geodesign

Geodesign requires collaboration among the design professionals, geographical sciences, information technologies, and the people of the place.

Carl Steinitz. 2012. A Framework for Geodesign: Changing Geography by Design. Redlands, CA: ESRI

The Decision Lab

Decision Lab Module

Mobile Geodesign

Mobile Geodesign

System Architecture

Model Method Time Test Results

Case Study 1

Seven Mile Creek Watershed Nicollet County Minnesota Seven Mile Creek watershed

Current Land Use

Solution? Strategic Biomass Production to Create Multifunctional Landscapes

Provide ecosystem services

- Water quality
- Biodiversity
- Food, fiber, fuel

Stakeholders' Goal: find win-win-wins

- ▼ TSS (SWAT modeling)
- ↓ Total P (SWAT modeling)
- ↓ Runoff (SWAT modeling)

- Habitat value (DNR modeling)
- Market return (UMN modeling)
- ↑ Landscape appearance of practices included in design
- ▲ Carbon sequestration (InVest modeling)

Solution? Land cover

Solution? Land cover

Solution? Land cover

Collaborative Geodesign Workshops

- 8 meetings
 - 4 background
 - 4 with tool

Show video

https://youtu.be/nXdW81Q7Kyl?t=40s

Collaborative Geodesign Results

How did participants respond to the quantitative feedback and alter their designs?

Collaborative Geodesign Research

- 8 Surveys
- 2 Sets of interviews
- 1 focus group

Win-Win Win-Win Win-Win

Design ID

Phases?

tinkering integration strategic regression

The geodesign "technology is

wonderful but has its

[technical] problems"

... What was unique was the use of [geodesign] in the context of the conversation we were having about the [landscape]... it allowed people to perhaps unintentionally lower those proposed barriers that they might normally have.

Case Study 2

LA Studio

Multifunctional Landscape Plan for Laketown Township and Eagleton, MN

*Laketown Township Study Region within MIN

*View of Corner Creek from proposed location of Engleton

Prepared May 14th, 2015 S I N Planners + Design, LLC Drew Ingvalson, Katrina Nygaard & Zachary Sippel

SIPPEL INGVALSON NYGAARD

Alternative	Area (acres)	Space Area (acres)		Quality	Resources	Suitability	Score (dev/harm)
Eagleton	5125	1001	3.41	26.11	40.28	-42.10	1.75
	1	I	1	ĺ			

Water

25.27

28.27

Significant

36.20

33.75

Development

-37.37

-34.69

Overall

1.64

1.48

Biodiversity

3.63

5.85

B 5122 1000

Table 1: Development Suitability Metrics

Town

5145

Open

992

Development

Α

Collaborative Geodesign Impact

- 1. Iterative, exploring design process
- 2. Potentially added complexity
- 3. Bounds group expectations
- 4. Decreases barriers between people

Funding

- USDA-NRCS Conservation Innovation Grant Program
- U-Spatial, University of Minnesota
- Office of the VP for Research, University of Minnesota
- Institute for Renewable Energy and Environment, UMN
- MnDRIVE

Thank you

Len Kne University of Minnesota lenkne@umn.edu

