Linking Ecological and Economic Models that Support Conservation Auctions to Reduce Harmful Algal Blooms in Lake Erie

Leah H. Palm-Forster^{*1,} Scott M. Swinton¹, Robert S. Shupp¹, Frank Lupi¹, Todd Redder,² and Joseph V. DePinto², ¹MSU, Agric., Food, & Resource Economics; ²Limno Tech

MSU Innovations in Collaborative Modeling Conference, June 4, 2015

How does this framework apply to Lake Erie?

© Monroe News

© www.nsf.gov

© EcoWatch.org

The New York Times

Behind Toledo's Water Crisis, a Long-Troubled Lake Erie

By MICHAEL WINES AUG. 4, 2014

Classic externality problem: Agricultural nutrient loss is the primary source of phosphorus in Lake Erie that fuels harmful algal blooms (HABs).

Farmers have property rights.

Conservation programs and payments for environmental services.

Models and pay-for-performance conservation

How can we get the most environmental benefit using a limited budget?

Pay based on predicted performance

Rank projects:

Cost

Env. Benefit

What types of models are needed?

*** Economic models**

- Budgeting model of direct costs of conservation BMPs
- Farmer decision models

*** Ecological models**

- Field run-off model
- In-stream nutrient transport model
- Lake algal bloom model (WLEEM)

Linking models to inform conservation auctions

Procurement (reverse) auction

Allows multiple landowners (sellers of environmental services) to compete for land conservation contracts from one buyer.

Bid are selected based on the payment requested and predicted environmental benefits.

 \rightarrow Requires biophysical models

Integrating models to pay-for-performance

Using ecological models to inform auctions

Maumee SWAT Model Conceptual Diagram

© Todd Redder, 2014

Integrating models to pay-for-performance

Biophysical models supported pilot auctions

Analyzed farmer preferences for different types of conservation incentives.

SWAT Models Total Phosphorus Yield for Mock Farms

Mock farms – control heterogeneity for the experiment.

Developed baseline management regimes

Generated SWAT output in advance

Cost-effectiveness: Some sites provide <u>much</u> better value for money

Real conservation auctions in the Lake Erie Basin

Models predicted reductions in runoff

Scenarios tailored to individual fields

The baseline required information about current management.

Bids ranked on the cost per pound of bioavailable phosphorus reduction (SWAT modeling by LimnoTech)

- Some very low P removal → Extremely expensive
- Predictions were very sensitive to assumptions about subsurface phosphorus movement.

Improving future modeling

 Need accurate models of subsurface drainage and how it affects movement of soluble phosphorus

		P Yield Reduction & Ranking (@ Tiffin River mouth)					
		Tile SRP Boundary = 150 ug/L			Tile SRP Boundary = 500 ug/L		
Bid #	ВМР Туре	Net P Yield Decrease (lb/yr)	Cost:Ben (\$/lb/yr)	Bid Rank	Net P Yield Decrease (lb/yr)	Cost:Ben (\$/lb/yr)	Bid Rank
1	Drain management	-0.2			1.8	\$1,137	8
2	Drain management	-0.6			3.9	\$406	2
3	Drain management	-0.3			0.7	\$2,310	11
4	Drain management	-0.5			3.6	\$439	3

Modeling participation

- * Farmers have to make two participation decisions
 - 1) Will I apply for the program?
 - 2) Will I enroll in the program and comply?
- * Identify participation barriers and deterrents.
 - Coordination among multiple land managers is costly.

Online tools inform land managers

← → C 🗋 35.8.121.111/glwms/

http://35.8.121.111/glwms/Map.aspx

Integrated models help pay-for-performance

Many thanks to our partners & supporters

MICHIGAN STATE UNIVERSITY

KBS LTER

Great Lakes Protection Fund

Defiance Soil & Water Conservation District

LimnoTech (2)

Ohio Soil and Water Conservation Districts Ohio Corn and Soybean Farmers

OGG BIOLOGICAL STATION | LONG-TERM ECOLOGICAL RESEARCH

What questions do you have?

Contact: Leah H. Palm-Forster Michigan State University Agricultural, Food, & Resource Economics email: leahmh@msu.edu website: www.leahpalmforster.wix.com/leah